The Conjugates, Compositions and Marginals of Convex Functions
نویسندگان
چکیده
Continuing the work of Hiriart-Urruty and Phelps, we discuss (in both locally convex spaces and Banach spaces) the formulas for the conjugates and subdifferentials of the precomposition of a convex function by a continuous linear mapping and the marginal function of a convex function by a continuous linear mapping. We exhibit a certain (incomplete) duality between the operations of precomposition and marginalization. Our results lead easily to Thibault’s proof of the maximal monotonicity of the subdifferential of a proper, convex lower semicontinuous function on a Banach space. We show that some of the Hiriart-Urruty—Phelps results on ε–subdifferentials have analogs in terms of the “ε–enlargement” of the subdifferential. We obtain new results on the conjugates and subdifferentials of sums of convex functions without constraint qualifications and also of episums of convex functions. We discuss constrained minimization on non–closed convex subsets of a Banach space.
منابع مشابه
Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملOn Fejér Type Inequalities for (η1,η2)-Convex Functions
In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...
متن کاملSome Properties of Certain Subclasses of Close-to-Convex and Quasi-convex Functions with Respect to 2k-Symmetric Conjugate Points
متن کامل
Hermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کامل